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Abstract. An isolated level coupled to a continuum of levels need not decay fully into them 
Ordinarily one expects exponential decay. modulo finite-sire effects. transients and long-time 
power-law tails. In the phenomenon we describe the amplitude for remaining in the initial 
state at first drops, but then levels off and remains O(1) indefinitely. Because-of the available 
continuum, this is different from certain quantum localization phenomena where there i s  an 
absence of on-shell levels. The origin of the effect we describe is, the existence af thresiiolds 
and band edges. A condition relating the proximity to threshold with the strength ofthe coupling 
determines whether the limited decay occurs. 

1. Introduction 

In nature, simple quantum systems are found to decay exponentially. In theoretical physics 
there are famous long-time and short-time departures [l-51; but it is only recently that the 
short-time phenomenon has been observed [61 and the long-t,ime power law has never been 
seen. On the other hand, if one models quantum decay on a computer, it may call for a 
good deal of fiddling with parameters before the decay looks exponential and even then 
there will still be a well understood Poincar6 recurrence [7]. 

In this paper we discuss a phenomenon in which the system not only fails to have 
exponential behaviour, but substantially fails to decay. A single level is coupled to a 
continuum of decay channels, with no shortage of on-shell levels. Nevertheless, even as 
t + CO, a significant fraction of the amplitude remains in the original level. For reasons that 
will be apparent below, this effect is especially likely to be seen in numerical work. There 
is, in addition, a finite-size effect: if the decay states do not form a continuum there will be 
an anomalously large remnant undecayed amplitude, even for cases where the continuum 
limit of the model would lose that amplitude. Again, numerical modelling will be sensitive 
to this effect. 

The absence of transitions that are ostensibly allowed both by energy and by coupling 
considerations makes an appearance in other physical applications. A well known 
phenomenon along these lines is the failure to tunnel, variously observed in a 'quantum 
localization' context [8] or even in a simple one-dimensional two-well system [9]. What 
we show here goes beyond the results of those authors in that we actually have a continuum 
of levels available, and the decay is still hindered. 

The origin of this phenomenon lies in the fact that the continuum of levels to which a 
system can decay does not extend from -CO to CO. First, energy is always bounded from 
below. Furthermore, the continuum into which the system decays may be a band of levels, 
as in a solid, which is bounded both above and below. The edge can give rise to modes 
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of the system resistant to the decay. These modes are closely related to the plasmon or 
quasiparticle modes encountered in condensed matter physics [I 1,121, although, as far as 
we know, time-dependent phenomena associated with these modes have not been noted. 
Actually, the defective decay arises not merely from the existence of these modes, but from 
the fact that the unstable level (the initial state, which in the absence of the decay coupling 
would have energy matching some of the continuum levels) has overlap with the plasmon 
mode that is of the order of unity, despite the fact that the overlap with most modes is a 
positive power of the level spacing (‘Am’) and vanishes in the continuum limit. Another 
phenomenon related to the existence of edges is the well known extreme long-time power- 
law tail. However, we emphasize that the phenomenon we study here is not slow decay, 
but failure to decay. 

Besides the plasmon modes just mentioned, there is the possibility that other physical 
decaying systems would satisfy the coupling constant threshold requirements that we give 
below and give rise to anomalously long-lived states. Conceivably, such states have already 
been observed, but their origin misinterpreted. 

In section 2, we define our model of a level perturbed by a multitude of other levels and 
find the changes in the spectrum of the Hamiltonian. To study the decay, we also need the 
eigenfunctions, and further information on them is derived in section 3. The fourth section 
puts this information to use and we show that if the threshold behaviour is too sharp, a 
failure to decay can occur. This demonstration is the main point of this paper. We also 
present a derivation of the usual exponential decay based on the eigenfunction expansion. 
This is of interest because it does not use Laplace transform methods. 

1.1. The numerics of decay 

It would seem reasonable that if one defined a Hamiltonian in terms of a single level that 
could decay into a continuum of levels, without worrying too much about coupling, you 

0.9 

0.8 :‘I 0.5 - 

0.4 - 

Figure 1. The norm of wavefunction remaining in the initial state as a function of time. The 
Hamiltonian is of the form shown in (2.1) and the initial state has x = 1 (in the notation 
section 2). For ‘C’ we take Ct = ( c / m ) [ i  - ( k / ( M  + I))’]”, k = - M . .  . . , M. with c = k 
and various M .  (The ‘N‘ of section 2 is 2 M  + 1.) ‘0’ is diagonal with 2M + 1 levels, evenly 
spaced benveen 0 and 2. The offset, ho. is 0.7. The full curve corresponds IO I*i2 f qr M = 17 
and the broken curye is M = 6 (corresponding to 36 x 36 and 14 x 14 “ices, respectively). 
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F i y r e  2. Logarithm of the norm of wavefunction remaining in the initial state as a function of 
time. The Hamiltonian has the same form as in (2.1) and is similar to that used for the previous 
figure. The main difference is that instead of the power ‘$’ used in C we use the power 2 (other 
differences: ho = 0.9 and c =0.1). U is again 36 x 36. 

should inevitably get exponential decay. Fermi’s ‘Golden Rule’ suggests that only on-shell 
matrix elements are important and if they are not doing anything strange one should find 
the exponential. Here we present numerical results which show that expectation to be 
unfounded. 

Figure 1 shows the results of a typical attempt. What is depicted is the norm of the 
amplitude remaining in an initial state which is in contact with a continuum. (The precise 
Hamiltonian is given in the figure caption.) For a while one seems to have exponential 
decay, but this does not empty the original state. Moreover, there remains an oscillatory 
time dependence. This phenomenon is not the Poincar6 recurrence associated with the 
finiteness of the matrices. To show this we plot the decay curves for two different sized 
matrices, in one of which there is a recmence, in one not. In this regard the two decays 
differ; however, the residual probability, well before the recurrence time, is essentially the 
same for both matrices. In figure 2 we show a successful decay. The difference between 
these and the reasons for exponential decay in one case and not in the other is the subject 
of this paper. 

2. Interaction of a level with a continuum: the spectrum 

In this section, we consider a Hamiltonian; H, that is suitable for describing the decay of a 
single level into a continuum.~In section 2.1 we solve for the eigenvalues and eigenvectors 
of H, for finite-dimensional H. We then consider the continuum limit. We find that 
the behaviour of~the largest and smallest eigenvalues can be particularly interesting and in 
section 2.2 we study these in a limit of high dimension. Finally in section 2.3 the continuum 
limit of the other eigenvalues is &omputed. ~~ 

2.1. Solution of the finite-dimensional eigenvalue problem 

The context is a  matrix Hamiltonian describing the decay of a single level into a 
quasicontinuum of states. The Hilbert space of the system is ( N  + I)-dimensional and 
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Figure 3. The curved dotted lines are the function 
xEi"=, Ic;12/(A - oi). The full curve is the function 
A. The straight veaical lines are for visualbation. 

consists of vectors of the type 

where x is a complex number and Y is an N-dimensional complex vector with components 
( Y ) j  = yj. The Hamiltonian is 

where ho is a real number, Q is the diagonal matrix diag(o1, . . . , O N )  and C is a complex 
N-vector with components (C)j  = cj. The range of the spectrum of Q, that is, the interval 
[ol , @ N I ,  will enter our later considerations and we designate it UQ. The eigenvalue problem, 
He = A*, is decomposed into a scalar and a vector equation 

We solve for Y 
hox+CtY=AX C x + n Y = A Y .  

x c; 
yi = 

and obtain the eigenvalue equation for A 

The solutions of (2.4) can be obtained graphically in the usual way. The function 
N 

i=l 

(2.3) 

(2.5) 

has poles at A = w; and tends to zero at infinity as shown in figure 3. There is a solution 
A j  of (2,4) in each interval [ w j , o j + ~ ]  for 1 < j 6 N - I. Moreover, we have two other 
solutions, one of which lies to the left of the others, one to the right. These are denoted A0 
and A,, and satisfy 

- C O  < A0 < w, oh' < ,Im < +w. 
In figure 3 we illustrate the case where ho is embedded in the quasicontinuum band 
(01. . . . , W N )  and when all~the cj are different from 0. 
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For j = 0, 1,2, . . . , N - 1, CO, the normalization condition on the eigenvector gives the 
relation 

for the x component of the eigenvector +U' of eigenvalue h(j). The normalized eigenvector 
@(j )  of eigenvalue hi, j = 0,1, . . . , N - 1, CO has components 

where the k-component of y ( J )  follows from (2.3) 

( j )  - ~ X U ) C k  
yx -=' (2.7) 

2.2. Continuum limit of the extreme eigenvalues 

In the forthcoming subsection we consider the effect on the extreme eigenvalues, hg and 
A,, of the h i t  N + M, i.e. the continuum limit of H. We thus focus on limiting forms 
of (2.4). There are two principal situations: on is bounded both above and below (as 
N + CO) or it is only bounded from below. In both cases we find that the behaviour of the 
external roots, ho and A,, in particular, whether they remain separated from the other roots, 
depends on the behaviour of the coupling constants and density of states near the edges. 

2.2.1. an bounded above and below. We first consider the case where the interval, aa, is 
finite. For convenience we take 01 = 0. For h outside an and for large N ,  the eigenvalue 
equation is well approximated by a continuum limit. We replace Xi in (2.4) by Jdo.  
equation (2.4) becomes 

h - h O = l  = Iv(w)I2p(w) 
A - w  

where w is a function of i defined by o = wi, a = WN and we have defined 

The scaling of c;, c; - constant/fi, is the usual relation for the continuum limit of a 
coupling. 

However, for our purposes it is simpler to assume that w is a linear function of its 
index, so that w = as and s = i/N. The function y(s) is defined as y (s )  = y;. More 
complicated situations can be accommodated by absorbing a density of states factor into y .  
In particular, the function Jy(s)12 would be systematically replaced by Iy(w)Jzp(w). With 
the linearity assumption, equation (2.4) becomes 

The function A + fd dsly(s)l'/(h - a s )  is defined for I < 0 and h =- a and decreases in 
magnitude as A moves away from that interval. Let us consider the eigenvalues in turn. 
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2.2.1.a. The negative root ho. If 
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then equation (2.8) has a root vo c 0. Obviously this is independent of N .  Returning to the 
discrete problem, equation (2.4), we see that the root ho c o1 = 0 of (2.4) remains a finite 
positive distance? from w1 when N 4 CO. We call the associated eigenstate the plasmon 
mode (see. e.g. [IO]). A sufficient condition for (2.9) to be fulfilled is y(0) # 0. However, 
it can also be satisfied for y(0) = 0, but with strong coupling or for ho near zero. 

On the other hand, if 

(2.10) 

then there is no root of (2.8) less than 0. Condition (2.10) obviously implies that y(0) = 0. 
In this case, if we assume that cl = 0, then figure 3 is replaced by figure 4; the matrix H 
becomes 

0 c; ., . . 

H =  
0 

so that w1 is in the spectrum of H when CI is 0. 

Figure 4. As in figure 3, except that the coefh- 
cients, e, ut the edges of the band a ~ e  zero. 

t The term 'finite positive distance' m a s  bat the distance is strictly positive for each N and that its N + w 
limit is also suictly positive. 
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For N large enough. we always have the situation shown in figure 4, namely, 

ho = wz - E 

Then equation (2.4) proves that for c1 = 0, 

( 0 2  = a / N ) .  

Assume that in the continuum limit 

for s + 0. Then we obtain 

and 

2.2.1.b. The positive mot A,. The discussion of the largest root is similar. If 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
. 

(2.15) 

then there is no root of (2.8) greater than a.  In this case, the condition (2.15) implies 
y(1) = 0. Moreover, if CN = 0, figure 3 must be modified and "-1 c. A, c OM. If we 
assume 

then we obtain 

If, on the other hand, 

(2.16) 

(2.17) 

then equation (2.8) has a root w, > a and~the root A, > WN of (2.4) stays away from the 
continuous spectrum [0, a ]  of H when N + 00. 
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2.2.2. UQ is boundedoniyfrom below._Now we consider the case~where the upper bound w~ 
lends to infinity while the lower bound w1 stays finite. We still assume 01 = 0, wk = kAw,  
with Am a level spacing that goes to zero. We obtain 

B Gaveau and L S S c h u l m  

In the limit N + 00, the eigenvalue A0 < W I  = 0 survives and stays away from the 
continuum [O, CO], provided 

as in (2.9). 

2.2.3. Subsection summary. When a level couples to a continuum, despite the fact that the 
unperturbed energy of that level is within the continuum, there can arise a collective mode 
of the system with energy outside that continuum. The presence of such a level depends 
on the strength of the coupling (and density of states), its threshold behaviour, and the 
proximity of the inserted level to the threshold or band edge. For example, the condition 
for having a level with energy below the original continuum is given by (2.9). 

2.2.4. The eigenvalues hj, 1 < j < N -  1. In this subsection we consider the other 
eigenvalues of H. For N + M, the roots A I ,  ... , A N - ,  of equation (2.4) become the 
continuous spectrum of H. Between each pair of levels of R there is an eigenvalue A. 
When we later deal with the time dependence of the decay we will need to h o w  where 
between these levels the eigenvalue falls. 

It is convenient to define 

(2.18) 

The eigenvalues we seek are roots, F(h)  = 0. We focus attention on a particular one, say 
that which lies between wj and This eigenvalue is written as 

(2.19) 

so that -1 < ej < 1. Before making the estimate we consider a continuum version of F ,  
to be called G. Define 

GQ) E h - ho - P [ d w E -  (2.20) 

where f ( w )  = p(o)ly(w)12 and P is principal value. Let A0 be a root of this, G(A0) = 0. 
Unlike F(h)  = 0, this equation has few roots, typically one of them, which we here assume 
to be the case. 

For the function F we could take a continuum limit, except that this would break down 
in the neighbourhood of the interval [w j ,  wj+l] .  For the principal value one integrates 
to within equal distances from the singularity; on the other hand, the way in which the 
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eigenvalue hj manages to be different from Ao is by having the endpoints of integration 
displaced from the centre of the interval. We will see this explicitly. 

For A E (w,, wj+l),  we take a continuum limit where that can be done, and write F as 

(2.21) 

We now add and subtract integrals from wj+l to A + S and from h - S to wj .  By letting 
S + 0, a short calculation leads to 

(2.22) 

for any A E (w j ,  wj+l) .  This immediately yields Oj = - tanh[G(A)/Zf(h)]. For h near ho, 
we have O - -(A - h)G'(Ao)/2f(ho). In particular, note that at A = ho; B is zero. 

3. Structure of the eigenvectors 

For large fixed N .  we examine the normalized eigenvectors @). In section 3.1 we consider 
those associated with the extreme eigenvalues. This breaks into several cases, according 
to whether~or not the eigenvalues stay bounded away from the continuum as N + w. In 
section 3.2 we obtain the form of the other eigenvectors. 

3.1. Behaviour of?h(O) or +("'I 

There are several cases and several questions to  examine^ within each 

3.1.1. ho stays afnite distancefrom the quasicontinuum w ] ,  . . . , UN. This is the case if (2.9) 
holds (taking w1 0). Then 

which is then finite. From equations (2.6) and (2.7) we deduce that 

(Recall that yk may tend to zero if k + 0 or k -+ N . )  This means that even for N -+ 00, 

do) does not shrink, and $(O) has significant overlap with the state that we are taking as 
the initial state for decay, namely, x = 1, Y = 0 (in the notation of section 2). 
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3.1.2. Ag tends to the continuum spectrum when N + 00. In this case the situation is 
slightly more complicated. We use (2.14) and the fact that wk = (k - l)a/N, c1 = 0 

B Gaveau and L S Schulman 

where E was calculated earlier (equation (2.13)) and we found that I E ~  CY l /N"+'.  In 
equation (3.2), the first term of the right-hand side is 

and the second term is of order N u .  In particular, !?om (2.6) we deduce 

and because 

we obtain 

(3.3) 

(3.4) 

Recall here that yl = 0 and E is given by (2.13). In the same manner we can treat the 
behaviour of @') (assuming a finite continuous spectrum [0, a]). 

We note here a surprising effect. In equation (3.3), x(") is of the order of O ( N - y ) ,  
while for 01 = 0 it is of order unity. There is no contradiction, for the following reasons. 

(i) When there is a plasmon mode, in particular for LY = 0, there is a different estimate 
of the eigenvector. 

(ii) Here equations (3.3) and (3.4) are derived under the hypothesis that there is 
no plasmon mode, in particular a = 0. As we have seen, & is now in the interval 
[m i ,  021 and the component x(O) of the corresponding eigenvector should be compared to 
that of an eigenvector of eigenvalue AX in the continuum. We shall see in (3.10) that if 
yx # 0, x(')  - O(N-'/'). So there is no contradiction with (3.3) because when a --f 0, 
equation (3.3) tells us that x(") would also be O(N-'/'). 

3.1.3. A, stays afni te  distancefrom a.  This is the case if (2.17) holds. Then 

and we deduce 

(3.5) 
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3.1.4. A,  tends to the continuous spectrum when N + 00. This is the case if (2.15) holds. 
Then equation (3.2) must be modified to 

where E is A, - “-1 and is given by (2.16), namely, 

Again in (3,6) the first term on the right-hand side is dominant and we conclude 

(3.7) 

(3.9) 
$’ - IF11 Yk 

N-K-1 
N(I+B)P ( a  - ho - A j; ds) ( E  + T a )  

where E is now given by (3.7). 

3.2. Behaviourof *(‘I, 0 e k e 00 

Consider~an eigenvalue with OK e A e OX+,, and take y~ # 0. Then 

As a result we can write dk) = O(I/m) as 

(3.10) 

Near the edges of the continuous spectrum, it may happen that yk tends to 0. In this case, 
the formula (3.10) is still valid but E(’) will tend to infinity. For example, assume, as 
in (2.12), that 

Iv(s)l2 - I?olz~cr 

for s + 0. This means that for fixed k and N --t 00 

lYkI2 - 1?O12 (k)” 
and then 
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In the last equation, the series on the right-hand side is bounded when N + 00 while the 
first term is greater than O(k'N1-=). In particular, we have for fixed k and large N 

B Gaveau and L S Schulman 

In the same manner, at the other extremity of the band, namely for x ( ~ - ~ ) ,  we have 

Ir(s)lZ - IF1IZ(1 -SIB  

and 

(3.11) 

(3.12) 

again for fixed k and large N .  This means that the function 
following behaviour near the band edges: 

defined by (3.10) has the 

for fixed k and large N. The components y:) of are given by 

(3.13) 

(3.14) 

4. Time dependence: the decay 

Using the information we have developed on the spectrum and eigenfunctions we can gain 
a detailed picture of the decay, in particular, the reasons for the failure of this system to 
attain full decay in the case where the thresholds are insufficiently smooth, the coupling too 
strong, or the external level too close to threshold. Our main result concerns the modification 
of-or defect in-decay when the introduction of the new level creates a plasmon mode. 

4.1. Decay ofthe state IO) 
We wish to find the time dependence of an initial vector 10) with components 

10) = ( y;ol) with = 0 j = 1,. . . , N .  

It is clear that 

and 
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The decay of 10) is obtained by considering 

N-I 

(0[~-irH10) = lr(0)lZe-irb + p l Z e - i r A m  + ~r(k)~Ze-irAp (4.1) 
k=I 

We begin by studying the behaviour of the last series in the right-hand side of (4.1). We 
call this sum @(t) and we examine both its moderate and long-time behaviour. 

The moderate time behaviour possesses an independent interest in that we will show 
how the usual exponential decay does emerge. In the usual Wigner-Weisskopf method 
one uses Laplace transformations, and the assumptions that lead to exponential decay are 
most conveniently expressed in terms of discarded line integrals and complex singularities 
that arise in the inverting of the Laplace transform. In our expressions the same general 
behaviour must emerge from the eigenfunction expansion, but one’s justification resides in 
the neglect of ostensibly different quantities. 

We thus consider intermediate times, that is, well below the Poincari recumence times 
(of the order of the inverse level spacing). Our presentation begins from Q(t) ,  the series 
in (4.1) (i.e. the total time dependence, absent the plasmon modes). We make use of (2.6) 
to obtain 

Note that this is 

(4.2) 

N-I 

k=l 

with F given in (2.18). 
In section 2 we further found that for I E [oj, oj+l], F could be approximated by 

(this was (2.22)) where G(h) is the continuum approximation for F given by (2.20) and 
whose root is ho. The derivative of F is then given by 

The denominator in the second term of F‘ is essentially d o  or dh so that this second 
term will have O ( N )  growth when taking the continuum limit. It therefore dominates the 
N-independent term G‘. It follows that 

e-ifA 

@(‘) = ./ dh4f(h)cosh2[G(h)/2f(h)] ‘ 

Recalling that G(Ao) = 0, we see that the integrand is peaked at ho. If one takes further 
steps of approximation the ‘Golden Rule’ formula can be derived. Specifically, for ,A 
near ho write G ( h )  x (A - ho)G’(ho). It’s amusing that one cannot approximate coshZ I I  
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by 1 + U', for otherwise the transition probability misses a factor x .  Recalling [I21 
that ~ ~ d x c o s u x / c o s h ' u ~  = un/[2u2sinh(un/2u)l, we see that IQ]' has a decay rate 
2zf(Ao)/G'(ho).  For small coupling G'(A.o) FS 1. This gives the 'Golden Rule'. Note too 
that the difference between ho and ho is what one generally calls the shift in the real part 
of the energy. 

There is much that is similar in this derivation to the usual Laplace transform methods 
and yet there is much that is different.. What one gets in that situation is an integral of the 
form ldAexp(-ith)/G"(h), with G a different continuum limit of F, namely that in which 
one takes the principal value as well as the iirS(h - o) that arises from the singularity. 
Then to arrive at exponential decay one must justify keeping all but the pole contribution 
in performing the Laplace inversion. In our expression there is no need to explore the 
complex singularity structure of the integrand (except possibly for elegant proofs of the 
formula from [12]). Furthermore, even in the absence of plasmon modes, there is no 
guarantee of perfect exponential behaviour (in fact, the dominated evolution effect, also 
known as the quantum Zen0 effect, is built into this formula, as is evident from the quoted 
integral). 

B Gaveau and L S Schulman 

We next consider the very long time behaviour. Define 

Then for N large 

If we assume that y(s)  vanishes at the band edges, [((s)lz has a singularity at the band 
edges given by (3.13): 

This means that for large I ,  the behaviour of the integral is 

[<(s)12 eirXo ds - Kt-'+maX(%#) (4.3) 

where K is some constant and where we take the exponent giving the slowest decay due 
to the contribution of the singularities of \:(s)\' at the extremities 0 or 1 of the interval. 

These power-law decays are similar to results known from other analyses 11-31, An 
intuitive physical understanding of this behaviour is given by Newton in terms of the 
domination of late, distant observations by extremely slow early decay products. This 
explanation presupposes translational modes, to which our abstract model does not make 
explicit reference (although the threshold density of states, related to our 'a' will reflect 
those modes). In any case, this late stage decay behaviour has not been seen physically. 
From the estimates of Newton [Z] this is not surprising. 

If y(s) does not vanish at the band edge, .$(s) has no singularity there and 

l1 I{(s)[' e-"sn ds - Kt-' . 

This is a particular case of (4.3) with 01 = p = 0. 
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4.2. Summary of decay behaviour 

We can now provide a complete discnssion~of the dccay of IO). 

4.2.1.a. Case I .  ho and A, stay away from the band edges 0 and a respectively. By 
equations (3.1) and (3.3, ,do) and dm) stay bounded, and we have oscillatory behaviour. 

( q e - i t H ~ o )  ~ p 1 Z e - i r A o  + ~ ~ ( m ) [ Z ~ - i f h ,  + W) 

where Q(i) may be exponential or power law, depending on i. Notice that these oscillations 
have frequencies ho and A,, so that their period is much shorter than the Poincar€ recurrence 
time of the system (which is of order N ) .  

4.2.1.b. Case 2. ho stays away from the band edge 0, but h, tends to the continuous 
spectrum. In this case, x(') is bounded by (3.1), but by (3.8) l.dm)I2 is 'of order N-('+P) 
and we have oscillatory behaviour 

(01 e-'"'lo) = lx(o)12e-i'*~ + o(N-( I+#)) + @ ( t ) .  

4.2.I.c. Case 3. Both ho and h, tend to the continuous spectrum. By equations (3.3) 
and (3.8), I X ( ~ ) ) ~ '  and I x ( " ' ) ~ ~  tend to zero as powers of N ,  and 

(01 e-ifHIO) = o(N-('+") ) e-irh + o(~-(l+P)) e-ifh, , 

The oscillatory behaviour is negligible. 
We see therefore that when a level persists outside un there is non-exponential decay. 

This required more than just the existence of a level. An important consideration was that 
the coefficients of standard initial wavefunctions automatically had significant components, 
non vanishing in the large-N limit, in the plasmon modes. 

4.3. Evolution of a stare of the coniinitous spectrum 

Let us now consider the state 

We take j to be within the continuous spectrum. We have 

and 

If ho stays away from the continuous spectrum, by equation (3.1), we deduce 
~~ 

X(0)yy = O ( l / f i ) .  



If ho tends to the continuous spectrum, by (3.3) and (3.4) we deduce 

(0) to)* = 0 * 
YJ ( 1  1. 

The same discussion holds for ~ ( ~ ) y i ( ~ ) ' .  Moreover, the last sum in (4.4) is estimated as 

The dominant behaviour is due to the terms near j (at least if j is well inside the continuum) 
because at the band edge Ig(k)Izy; has a singularity s-~" or (1 -s)-I2. It is easy to deduce 
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